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Context
PWCET estimation

Task Hardware Probability

10-6 ........................ )

WCET

= pWCET: WCET with attached exceedance probability
m Bound the occurrence of events in the system
® Match industry standard
m | ess pessimistic than absolute bounds
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Context
Evict-on-miss replacement policy

L1
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LLL

= On a miss, evict one of the N cache lines at random.
®m Provide a model suited to pWCET computation.

1
m On a miss, each line has the same probability to be kept: 1-— <—> = <

K
= After K misses: <N — 1)
N



Context
Static probabilistic timing analysis (SPTA)

= Contention approach: lower-bound hit probability P(H:') per access.
m Derive a Probability Mass Function (PMF) for access latency.
m Convolve the PMF of all accesses.
= Requires the independence of the bound from actual hit/miss events.

N —1\" o Lpq Lyem
P(H") = <T> PME = (P(H“) 1-— P(H“))

m K Reuse distance, misses from the last inserfion in cache.
m N: Associativity, number of cache ways.
m J.;4: Access latency to L1 cache.
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Context
Static probabilistic timing analysis (SPTA)

= Contention approach: lower-bound hit probability P(H:') per access.
m Derive a Probability Mass Function (PMF) for access latency.
m Convolve the PMF of all accesses.
= Requires the independence of the bound from actual hit/miss events.

0 Co>N
LL1 LMem

K
P(H") = (N]; 1> K<N PME = (p(HLl) 1- P(H“))

K: Reuse distance, misses from the last insertion in cache.

Co: Contention, potential hits from the last insertion in cache.

N: Associativity, number of cache ways.

L;1: Access latency to L1 cache.
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Context
Static probabilistic timing analysis (SPTA)

= Collection approach: approximate the set of possible cache states
m With the execution time and occurrence probability.
m A miss creates a new state per cache line.
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Context
Static probabilistic timing analysis (SPTA)

= Collection approach: approximate the set of possible cache states
m With the execution time and occurrence probability.
m A miss creates a new state per cache line.
m Focus on a subset of blocks to reduce complexity.
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Context
SPTA on Access fraces

? ? ? ? ? ? ?
L) L] ] ] ] L) L]

= SPTA has been defined for traces of accesses
m Select focused blocks
m Perform contention and collection analysis
. Combine computed distributions
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Context
SPTA on Access fraces
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Context
SPTA on Control flow graphs

How to extend existing approaches to control flow graphs ?
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= Contention analysis
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Context
SPTA on Control flow graphs

How to extend existing approaches to control flow graphs ?
= Contention analysis
m Focused blocks selection

m Collection analysis
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Outline

= Multipath SPTA
m Contention analysis
m Selecting focussed blocks
m Collection analysis
= WCEP Expansion
m Definition of Including paths
m Transformations
® Evaluation

= Conclusions and perspectives
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Multipath analysis

Contention analysis

0 Co>N

K
P(HM) = (N]; 1) K <N

K: Reuse distance, maximum misses from the last insertion in cache.
m Maximised across all paths leading to access
s Computed through forward dataflow analysis

Co: Contention, maximum potential hits from the last insertion in cache.
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Multipath SPTA

Selecting focussed blocks

® Enumerate cache states only for R focussed blocks
= R must change according to path
= R may change at different points in task

= Focus on blocks with smallest lifespan
= Most likely to be kept in cache
m Relies on alower bound
= Combines forward and backward reuse distance

(@)

(m)

(m)

27



Multipath SPTA

Selecting focussed blocks

® Enumerate cache states only for R focussed blocks
= R must change according to path
= R may change at different points in task

= Focus on blocks with smallest lifespan
= Most likely to be kept in cache
m Relies on alower bound
= Combines forward and backward reuse distance

(@)

(m)

(m)

28



Multipath SPTA

Selecting focussed blocks

® Enumerate cache states only for R focussed blocks
= R must change according to path
= R may change at different points in task

= Focus on blocks with smallest lifespan
= Most likely to be kept in cache
m Relies on alower bound
= Combines forward and backward reuse distance

(@)

(m)

(m)

29



Multipath analysis

Collection — Conftrol flow convergence

= Analysis state holds a set of :
m Cache contents
= Occurrence probability
= Maximum execution time distribution

= Gather information from all incoming paths
= Only keep guaranteed information
m Upper-bound incoming states
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Multipath anal

SIS

Collection — Comparison between cache states

" S, C 5, S, results in less pessimistic estimates
m S, holds more precise information than S,

m C : Parfial ordering between set of cache states

= @lOc

m | 0ss of information related fo cache contents

" (@) =A(

1/3), (@0 2/3)}

m |Information split across contents

 L<U > (@l

.1.1) = (@0

|.1.U)

m The contribution of U to pWCET is greater than L
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Multipath analysis

Collection — Comparison between cache states

" S, C 5, S, results in less pessimistic estimates
m S, holds more precise information than S,
m C : Parfial ordering between set of cache states

® || : compute an upper-bound on input states
m S, C(S,uS,)and S, = (S, US,)
® [ is a validjoin function
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Multipath analysis

Collection — Defining a join function

Sa Sb

W ¢
@Tm > | (@2
CHCm ¢

( A )

= Keep only common blocks and contents
m Occurrence bounded by lowest denominator
= Maximise merged distributions (Omifted)
® Merge unmatched states into empty state
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Multipath analysis
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Multipath analysis

Collection — Defining a join function

Sa Sb
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= Keep only common blocks and contents
m Occurrence bounded by lowest denominator
= Maximise merged distributions (Omifted)
® Merge unmatched states into empty state




WCEP Expansion

Path redundancy

(] — @ —
N

= Redundant path: path P; is redundant with path P, if:
= pWCET(P;) < pWCET(P,)

Redundant paths can be ignored by the analysis

= Inclusion is a sub-case of redundancy
= Anincluding path holds at least the same sequence of accesses
m Proof in the paper
m Exploited in MBPTA, [PUB: Path Upper-Bounding, ECRTS’ 14]
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WCEP Expansion

Transformation - Empty conditional removals

= Empty branches generate including paths
" An edge from A to C, C also reached through B from A
m Empty branches Captured through dominators in CFG
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WCEP Expansion

Transformation - Loop unrolling

N,

z :
Q’ ‘0.
0. *

= Loop unrolling generates including paths
= Virtual unrolling used in the absence of fixed-point computation
m Enforce maximum loop iterations
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Evaluation
Experimental conditions

= Analysis of misses in instruction cache
= ]6-way, fully associative
m 32B lines

= Excerpt of the TACLeBench suite
m Focus on interesting results

= Compared methods:
Simulation: distribution over 108 runs

Merging: synthetic path upper-bound based on reuse-distance
Contention

Collection: collection approach with R focussed blocks

LRU: deterministic LRU cache analysis
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Evaluation
Results — ud, 3K accesses
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Evaluation
Results — compress, 31K accesses
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Evaluation

Results — fft 18K accesses
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Evaluation
Complexity

Time (in seconds)
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Evaluation
Complexity

Runtime of the Analysis

10000
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= Complexity: O(|S| x m x log(m))
= m: number of accesses in the program
= |S|: number of possible cache states, R < associativity = 28 = |S]
®m R: number of focused blocks

12
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Evaluation
Complexity — Control flow partitioning

Runtime of the Analysis
10000

1000

100

Time (in seconds)
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#focused blocks

= Reduce complexity through control-flow partitioning
m Split the CFG in independent chunks of 1000 Misses

m B, Pasdeloup, “Static probabilistic fiming analysis of worst-case execution time
for random replacement caches,” INRIA, Tech. Rep., 2014
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Conclusions and perspectives

Definition of a multipath approach to SPTA:
m Extend collection approaches
m Extend contention approaches
= Orthogonal to SPTA optimisation approaches
ldentification and removal of non pWCET-relevant paths:
m Based on simple heuristics
m Reduced complexity and pessimism
Improve conservation of information on join
ldentify additional cases for path redundancy
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Backup

" Memory hierarchies: the quick version RTSOPS'14
m Mostly inclusive Memory hierarchies: the anomalies and beyond
m xclusive Memory hierarchies: Pushing things around

B |mproving on the join function: Salvaging capacity
m Benefits of WCEP: TODO
m Impact of CFG-partitioning on precision: TODO
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Memory hierarchies -
Impact on SPTA RO

m Hierarchies induce additional dependencies on different levels.
m Hinder the definition of sound hit probabilities.
m Hinder the sound combination of hit probabilities.

® Assumptions for contention on single caches do not hold.
m No model of the different hierarchy policies.

m |[ncreases the complexity of the collection approaches.
m Evictions on multiple levels multiply the number of states.
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Memory hierarchies -
. . . RTSOPS' 14
Mostly-inclusive policy - SPTA

= Compute the reuse distance from the guaranteed insertion in cache.
= No guarantee on misses with randomised caches.
m The requested blockis in the L1.

G @O @0 O @G & B

\ 1 Kll(a) =2

. O .

2<K'@)< 4
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Memory hierarchies -
. . . RTSOPS' 14
Mostly-inclusive policy - SPTA

= A miss is not the worst-case contents-wise.
. Assuming an insertion occurs might result in lower latencies later.
m Discrepancy with temporal worst-case.

L1 L2 L3

\ .

— ] —

\

May be present
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Memory hierarchies

Mostly-inclusive policy - SPTA

® A miss is not the worst-case contents-wise.

. Assuming an insertion occurs might result in lower latencies later.

m Discrepancy with temporal worst-case.

L2

L]
o ) — |

| —
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L3

RTSOPS'14
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Memory hierarchies -
. . . RTSOPS' 14
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Memory hierarchies -
. . . RTSOPS' 14
Mostly-inclusive policy - SPTA

= A miss is not the worst-case contents-wise.
. Assuming an insertion occurs might result in lower latencies later.
m Discrepancy with temporal worst-case.

xL]Miss
O -U -

,

R

o
-0 0. |
o

Lis+ Lyem +L1

o 61




Memory hierarchies -
. . . RTSOPS' 14
Mostly-inclusive policy - SPTA

= A miss is not the worst-case contents-wise.
. Assuming an insertion occurs might result in lower latencies later.
m Discrepancy with temporal worst-case.
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Memory hierarchies
Mostly-inclusive policy - SPTA

= A miss is not the worst-case contents-wise.
. Assuming an insertion occurs might result in lower latencies later.
m Discrepancy with temporal worst-case.
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Memory hierarchies -
. . . RTSOPS'14
Exclusive policy - Properties

= Miss on the L1 conftribute to the reuse distance of all levels.
m Hits beyond the L1 trigger invalidations.

® [nsertion on L occur on eviction from L-1.
m |nsertions on L do not match the sequence of accesses.
® No guarantee on evictions from L-1 with randomised caches.
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Multipath analysis

Improving the join function
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= Keep only common blocks and contents
m Occurrence bounded by lowest denominator
= Maximise merged distributions (Omifted)
® Merge unmatched states into included states
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Multipath analysis

Improving the join function
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Multipath analysis

Improving the join function
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= Keep only common blocks and contents
m Occurrence bounded by lowest denominator
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Multipath analysis

Improving the join function
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= Keep only common blocks and contents
m Occurrence bounded by lowest denominator
= Maximise merged distributions (Omifted)
® Merge unmatched states into included states
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