
1

Static Probabilistic Timing Analysis for Multi-

path Programs

Benjamin Lesage, David Griffin, Sebastian Altmeyer, Robert I. Davis

RTSS 2015 – Dec 4th

2

Context

 pWCET: WCET with attached exceedance probability

 Bound the occurrence of events in the system

 Match industry standard

 Less pessimistic than absolute bounds

pWCET estimation

Hardware

+

WCET

Probability

10-6

Task

3

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

Randomised caches

Memory
Processor

L1

4

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

Randomised caches

Memory
Processor

?

L1

5

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

Randomised caches

Memory
Processor

L1

6

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

 On a miss, the requested data is inserted in the cache.

 The data is expected to be reused (locality property).

 The eviction policy makes room in the cache.

Randomised caches

Memory
Processor

?

L1

7

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

 On a miss, the requested data is inserted in the cache.

 The data is expected to be reused (locality property).

 The eviction policy makes room in the cache.

Randomised caches

Memory
Processor

L1

8

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

 On a miss, the requested data is inserted in the cache.

 The data is expected to be reused (locality property).

 The eviction policy makes room in the cache.

Randomised caches

Memory
Processor

L1

9

Context

 On a miss, evict one of the N cache lines at random.

 Provide a model suited to pWCET computation.

 On a miss, each line has the same probability to be kept:

 After 𝐾 misses:

Evict-on-miss replacement policy

1 −
1

𝑁
=

𝑁 − 1

𝑁

?
+

𝑁 − 1

𝑁

𝐾

L1

10

 Contention approach: lower-bound hit probability 𝑃 𝐻𝐿1 per access.

 Derive a Probability Mass Function (PMF) for access latency.

 Convolve the PMF of all accesses.

 Requires the independence of the bound from actual hit/miss events.

Context

Static probabilistic timing analysis (SPTA)

𝑃 𝐻𝐿1 =
𝑁 − 1

𝑁

𝐾

𝑃𝑀𝐹 =
𝐿𝐿1 𝐿𝑀𝑒𝑚

𝑃(𝐻𝐿1) 1 − 𝑃(𝐻𝐿1)

 K : Reuse distance, misses from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.

11

 Contention approach: lower-bound hit probability 𝑃 𝐻𝐿1 per access.

 Derive a Probability Mass Function (PMF) for access latency.

 Convolve the PMF of all accesses.

 Requires the independence of the bound from actual hit/miss events.

Context

Static probabilistic timing analysis (SPTA)

𝑃 𝐻𝐿1 =
𝑁 − 1

𝑁

𝐾

𝑃𝑀𝐹 =
𝐿𝐿1 𝐿𝑀𝑒𝑚

𝑃(𝐻𝐿1) 1 − 𝑃(𝐻𝐿1)

 K : Reuse distance, misses from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.

a,b,c,a,b,c + = 3 predicted hits

12

 Contention approach: lower-bound hit probability 𝑃 𝐻𝐿1 per access.

 Derive a Probability Mass Function (PMF) for access latency.

 Convolve the PMF of all accesses.

 Requires the independence of the bound from actual hit/miss events.

Context

Static probabilistic timing analysis (SPTA)

𝑃𝑀𝐹 =
𝐿𝐿1 𝐿𝑀𝑒𝑚

𝑃(𝐻𝐿1) 1 − 𝑃(𝐻𝐿1)

 K : Reuse distance, misses from the last insertion in cache.

 Co : Contention, potential hits from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.

𝑃 𝐻𝐿1 =

0 𝐶𝑜 > 𝑁

𝑁 − 1

𝑁

𝐾

𝐾 ≤ 𝑁

13

 Collection approach: approximate the set of possible cache states

 With the execution time and occurrence probability.

 A miss creates a new state per cache line.

Context

Static probabilistic timing analysis (SPTA)

14

 Collection approach: approximate the set of possible cache states

 With the execution time and occurrence probability.

 A miss creates a new state per cache line.

 Focus on a subset of blocks to reduce complexity.

Context

Static probabilistic timing analysis (SPTA)

Not focussed

15

Context

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

SPTA on Access traces

? ? ? ? ? ? ?

16

Context

SPTA on Access traces

K()

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

17

Context

SPTA on Access traces

K()

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

18

Context

SPTA on Access traces

K()

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

19

Context

SPTA on Access traces

? ? ? ?

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

20

Context

SPTA on Access traces

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

21

Context

SPTA on Access traces

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

22

Context

SPTA on Control flow graphs

? ?

How to extend existing approaches to control flow graphs ?

Contention analysis

Focused blocks selection

Collection analysis

23

Context

SPTA on Control flow graphs

? ?

K()

K()

How to extend existing approaches to control flow graphs ?

 Contention analysis

 Focused blocks selection

Collection analysis

24

Context

SPTA on Control flow graphs

? ?

How to extend existing approaches to control flow graphs ?

 Contention analysis

 Focused blocks selection

 Collection analysis

25

Outline

Context

Multipath SPTA
 Contention analysis

 Selecting focussed blocks
 Collection analysis

WCEP Expansion
 Definition of Including paths

 Transformations

 Evaluation

Conclusions and perspectives

26

Multipath analysis

Contention analysis

𝑃 𝐻𝐿1 =

0 𝐶𝑜 > 𝑁

𝑁 − 1

𝑁

𝐾

𝐾 ≤ 𝑁

? ?

K()

 K : Reuse distance, maximum misses from the last insertion in cache.

 Maximised across all paths leading to access

 Computed through forward dataflow analysis

 Co : Contention, maximum potential hits from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.

27

Multipath SPTA

Selecting focussed blocks

 Enumerate cache states only for R focussed blocks

 R must change according to path

 R may change at different points in task

 Focus on blocks with smallest lifespan

 Most likely to be kept in cache

 Relies on a lower bound

 Combines forward and backward reuse distance

()

()

()

28

Multipath SPTA

Selecting focussed blocks

()

()

()

 Enumerate cache states only for R focussed blocks

 R must change according to path

 R may change at different points in task

 Focus on blocks with smallest lifespan

 Most likely to be kept in cache

 Relies on a lower bound

 Combines forward and backward reuse distance

29

Multipath SPTA

Selecting focussed blocks

()

()

()

 Enumerate cache states only for R focussed blocks

 R must change according to path

 R may change at different points in task

 Focus on blocks with smallest lifespan

 Most likely to be kept in cache

 Relies on a lower bound

 Combines forward and backward reuse distance

30

Multipath analysis

Collection – Control flow convergence

 Analysis state holds a set of :

 Cache contents

 Occurrence probability

 Maximum execution time distribution

 Gather information from all incoming paths

 Only keep guaranteed information

 Upper-bound incoming states

?

31

Multipath analysis

 𝑺𝒂 ⊑ 𝑺𝒃, 𝑆𝑎 results in less pessimistic estimates

 𝑆𝑎 holds more precise information than 𝑆𝑏

 ⊑ : Partial ordering between set of cache states

 ⊑

 Loss of information related to cache contents

 (,1) ⊑ {(,1/3), (,2/3)}

 Information split across contents

 𝑳 ≤ 𝑼 ⇒ (,1,𝑳) ⊑ (,1,𝑼)

 The contribution of 𝑈 to pWCET is greater than 𝐿

Collection – Comparison between cache states

32

Multipath analysis

 𝑺𝒂 ⊑ 𝑺𝒃, 𝑆𝑎 results in less pessimistic estimates

 𝑆𝑎 holds more precise information than 𝑆𝑏

 ⊑ : Partial ordering between set of cache states

 ⊔ : compute an upper-bound on input states

 𝑆𝑎 ⊑ (𝑆𝑎 ⊔ 𝑆𝑏) and 𝑆𝑏 ⊑ (𝑆𝑎 ⊔ 𝑆𝑏)

 ⊔ is a valid join function

Collection – Comparison between cache states

33

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 12)

(, 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

34

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 12)

(, 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

35

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 9)

(, 7)

(, 12)

(, 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

36

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 9)

(, 7)

(, 12)

(, 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

37

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 9)

(, 7)

(, 12)

(, 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

38

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 9)

(, 7)

(, 9)

(, 7)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

39

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 12)

(, 4)

𝑆𝑏

(, 9)

(, 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state

40

WCEP Expansion

Path redundancy

 Redundant path: path 𝑃1 is redundant with path 𝑃2 if:

 𝑝𝑊𝐶𝐸𝑇 𝑃1 ≤ 𝑝𝑊𝐶𝐸𝑇 𝑃2

Redundant paths can be ignored by the analysis

 Inclusion is a sub-case of redundancy

 An including path holds at least the same sequence of accesses

 Proof in the paper

 Exploited in MBPTA, [PUB: Path Upper-Bounding, ECRTS’14]

?

41

WCEP Expansion

Transformation - Empty conditional removals

A B C

 Empty branches generate including paths

 An edge from A to C, C also reached through B from A

 Empty branches Captured through dominators in CFG

42

WCEP Expansion

Transformation - Empty conditional removals

 Empty branches generate including paths

 An edge from A to C, C also reached through B from A

 Empty branches Captured through dominators in CFG

A B C

43

WCEP Expansion

Transformation - Loop unrolling

 Loop unrolling generates including paths

 Virtual unrolling used in the absence of fixed-point computation

 Enforce maximum loop iterations

?

44

WCEP Expansion

Transformation - Loop unrolling

 Loop unrolling generates including paths

 Virtual unrolling used in the absence of fixed-point computation

 Enforce maximum loop iterations

45

WCEP Expansion

Transformation - Loop unrolling

 Loop unrolling generates including paths

 Virtual unrolling used in the absence of fixed-point computation

 Enforce maximum loop iterations

46

Evaluation

Experimental conditions

 Analysis of misses in instruction cache

 16-way, fully associative

 32B lines

 Excerpt of the TACLeBench suite

 Focus on interesting results

 Compared methods:

 Simulation: distribution over 108 runs

 Merging: synthetic path upper-bound based on reuse-distance

 Contention

 Collection: collection approach with R focussed blocks

 LRU: deterministic LRU cache analysis

47

Evaluation

Results – ud, 3K accesses

LRU

Simulation + WCEP

Merging + WCEP

Contention+ WCEP

Collection R=4 + WCEP

Collection R=8 + WCEP

48

Evaluation

Results – compress, 31K accesses

LRU

Simulation + WCEP

Merging + WCEP

Contention+ WCEP

Collection R=4 + WCEP

Collection R=8 + WCEP

49

Evaluation

Results – fft 18K accesses

LRU

Simulation + WCEP

Merging + WCEP

Contention+ WCEP

Collection R=4 + WCEP

Collection R=8 + WCEP

50

Evaluation

Complexity

51

Evaluation

Complexity

 Complexity: 𝑂(𝑆 × 𝑚 × log 𝑚)

 𝒎: number of accesses in the program

 𝑺 : number of possible cache states, 𝑅 ≤ 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 ⇒ 2𝑅 = 𝑆

 R: number of focused blocks

52

Evaluation

Complexity – Control flow partitioning

 Reduce complexity through control-flow partitioning

 Split the CFG in independent chunks of 1000 Misses

 B. Pasdeloup, “Static probabilistic timing analysis of worst-case execution time

for random replacement caches,” INRIA, Tech. Rep., 2014

53

Conclusions and perspectives

Definition of a multipath approach to SPTA:
 Extend collection approaches

 Extend contention approaches

 Orthogonal to SPTA optimisation approaches

Identification and removal of non pWCET-relevant paths:
 Based on simple heuristics

 Reduced complexity and pessimism

Improve conservation of information on join

Identify additional cases for path redundancy

54

Backup

 Memory hierarchies: the quick version

 Mostly inclusive Memory hierarchies: the anomalies and beyond

 Exclusive Memory hierarchies: Pushing things around

 Improving on the join function: Salvaging capacity

 Benefits of WCEP: TODO

 Impact of CFG-partitioning on precision: TODO

RTSOPS’14

55

Memory hierarchies

 Hierarchies induce additional dependencies on different levels.

 Hinder the definition of sound hit probabilities.

 Hinder the sound combination of hit probabilities.

 Assumptions for contention on single caches do not hold.

 No model of the different hierarchy policies.

 Increases the complexity of the collection approaches.

 Evictions on multiple levels multiply the number of states.

Impact on SPTA
RTSOPS’14

56

Memory hierarchies

 Compute the reuse distance from the guaranteed insertion in cache.

 No guarantee on misses with randomised caches.

 The requested block is in the L1.

Mostly-inclusive policy - SPTA

aa b c a d e

𝐾𝐿1(𝑎) = 2

2 ≤ 𝐾𝐿2(𝑎) ≤ 4

RTSOPS’14

57

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 L2 L3

May be present

RTSOPS’14

58

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

?

L1 L2 L3

RTSOPS’14

59

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Miss

RTSOPS’14

60

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Miss

?

RTSOPS’14

61

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Miss

?

?

𝐿𝐿3 + 𝐿𝑀𝑒𝑚 +𝐿𝐿2

RTSOPS’14

62

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Hit

?

?

𝐿𝐿1 + 𝐿𝑀𝑒𝑚 +𝐿𝑀𝑒𝑚

RTSOPS’14

63

Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 HitL1 Miss

𝐿𝐿3 + 𝐿𝑀𝑒𝑚 +𝐿𝐿2 𝐿𝐿1 + 𝐿𝑀𝑒𝑚 +𝐿𝑀𝑒𝑚≤

≥

RTSOPS’14

64

Memory hierarchies

 Miss on the L1 contribute to the reuse distance of all levels.

 Hits beyond the L1 trigger invalidations.

 Insertion on L occur on eviction from L-1.

 Insertions on L do not match the sequence of accesses.

 No guarantee on evictions from L-1 with randomised caches.

Exclusive policy - Properties
RTSOPS’14

65

Multipath analysis

Improving the join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 12)

(, 4)

𝑆𝑏

(, 9)

(, 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states

66

Multipath analysis

Improving the join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 12)

(, 4)

𝑆𝑏

(, 9)

(, 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states

⊑
⊑
⊑

67

Multipath analysis

Improving the join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 12)

(, 4)

𝑆𝑏

(, 9)

(, 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states

68

Multipath analysis

Improving the join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 9)

(, 4)

(, 3)

𝑆𝑏

(, 9)

(, 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states

69

Multipath analysis

Improving the join function

𝑆𝑎

(, 6)

(, 3)

(, 6)

(, 1)

(, 9)

(, 4)

(, 3)

𝑆𝑏

(, 9)

(, 2)

(, 4)

(, 1)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states

