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Context

 pWCET: WCET with attached exceedance probability

 Bound the occurrence of events in the system

 Match industry standard

 Less pessimistic than absolute bounds

pWCET estimation

Hardware

+

WCET

Probability

10-6

Task
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Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

Randomised caches

Memory
Processor

L1



4

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

Randomised caches

Memory
Processor

?

L1



5

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

Randomised caches

Memory
Processor

L1



6

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

 On a miss, the requested data is inserted in the cache.

 The data is expected to be reused (locality property).

 The eviction policy makes room in the cache.

Randomised caches

Memory
Processor

?

L1



7

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

 On a miss, the requested data is inserted in the cache.

 The data is expected to be reused (locality property).

 The eviction policy makes room in the cache.

Randomised caches

Memory
Processor

L1



8

Context

 Caches bridge the gap between the processor and the memory.

 Memory requests are served by the cache on hits.

 On a miss, the requested data is inserted in the cache.

 The data is expected to be reused (locality property).

 The eviction policy makes room in the cache.

Randomised caches

Memory
Processor

L1



9

Context

 On a miss, evict one of the N cache lines at random.

 Provide a model suited to pWCET computation.

 On a miss, each line has the same probability to be kept:

 After 𝐾 misses: 

Evict-on-miss replacement policy

1 −
1

𝑁
=

𝑁 − 1

𝑁

?
+

𝑁 − 1

𝑁

𝐾

L1
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 Contention approach: lower-bound hit probability 𝑃 𝐻𝐿1 per access.

 Derive a Probability Mass Function (PMF) for access latency.

 Convolve the PMF of all accesses.

 Requires the independence of the bound from actual hit/miss events.

Context

Static probabilistic timing analysis (SPTA)

𝑃 𝐻𝐿1 =
𝑁 − 1

𝑁

𝐾

𝑃𝑀𝐹 =
𝐿𝐿1 𝐿𝑀𝑒𝑚

𝑃(𝐻𝐿1) 1 − 𝑃(𝐻𝐿1)

 K : Reuse distance, misses from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.
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 K : Reuse distance, misses from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.

a,b,c,a,b,c +          = 3 predicted hits
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 Contention approach: lower-bound hit probability 𝑃 𝐻𝐿1 per access.

 Derive a Probability Mass Function (PMF) for access latency.

 Convolve the PMF of all accesses.

 Requires the independence of the bound from actual hit/miss events.

Context

Static probabilistic timing analysis (SPTA)

𝑃𝑀𝐹 =
𝐿𝐿1 𝐿𝑀𝑒𝑚

𝑃(𝐻𝐿1) 1 − 𝑃(𝐻𝐿1)

 K : Reuse distance, misses from the last insertion in cache.

 Co : Contention, potential hits from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.

𝑃 𝐻𝐿1 =  

0 𝐶𝑜 > 𝑁

𝑁 − 1

𝑁

𝐾

𝐾 ≤ 𝑁
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 Collection approach: approximate the set of possible cache states

 With the execution time and occurrence probability.

 A miss creates a new state per cache line.

Context

Static probabilistic timing analysis (SPTA)



14

 Collection approach: approximate the set of possible cache states

 With the execution time and occurrence probability.

 A miss creates a new state per cache line.

 Focus on a subset of blocks to reduce complexity.

Context

Static probabilistic timing analysis (SPTA)

Not focussed
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Context

 SPTA has been defined for traces of accesses

 Select focused blocks

 Perform contention and collection analysis

 Combine computed distributions

SPTA on Access traces

? ? ? ? ? ? ?
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Context

SPTA on Control flow graphs

? ?

How to extend existing approaches to control flow graphs ?

Contention analysis

Focused blocks selection

Collection analysis
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Outline

Context

Multipath SPTA
 Contention analysis

 Selecting focussed blocks
 Collection analysis

WCEP Expansion
 Definition of Including paths

 Transformations

 Evaluation

Conclusions and perspectives
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Multipath analysis

Contention analysis

𝑃 𝐻𝐿1 =  

0 𝐶𝑜 > 𝑁

𝑁 − 1

𝑁

𝐾

𝐾 ≤ 𝑁

? ?

K(      )

 K : Reuse distance, maximum misses from the last insertion in cache.

 Maximised across all paths leading to access

 Computed through forward dataflow analysis

 Co : Contention, maximum potential hits from the last insertion in cache.

 N : Associativity, number of cache ways.

 𝑳𝑳𝟏: Access latency to L1 cache.
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Multipath SPTA

Selecting focussed blocks 

 Enumerate cache states only for R focussed blocks

 R must change according to path

 R may change at different points in task

 Focus on blocks with smallest lifespan

 Most likely to be kept in cache

 Relies on a lower bound

 Combines forward and backward reuse distance

(      )

(      )

(      )
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Multipath SPTA

Selecting focussed blocks 

(      )

(      )

(      )

 Enumerate cache states only for R focussed blocks

 R  must change according to path

 R  may change at different points in task

 Focus on blocks with smallest lifespan

 Most likely to be kept in cache

 Relies on a lower bound

 Combines forward and backward reuse distance
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Multipath analysis

Collection – Control flow convergence

 Analysis state holds a set of :

 Cache contents

 Occurrence probability

 Maximum execution time distribution

 Gather information from all incoming paths

 Only keep guaranteed information

 Upper-bound incoming states

?
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Multipath analysis

 𝑺𝒂 ⊑ 𝑺𝒃, 𝑆𝑎 results in less pessimistic estimates

 𝑆𝑎 holds more precise information than 𝑆𝑏

 ⊑ : Partial ordering between set of cache states

 ⊑

 Loss of information related to cache contents

 (         ,1) ⊑ {(         ,1/3), (         ,2/3)}

 Information split across contents

 𝑳 ≤ 𝑼 ⇒ ( ,1,𝑳) ⊑ ( ,1,𝑼)

 The contribution of 𝑈 to pWCET is greater than 𝐿

Collection – Comparison between cache states
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Multipath analysis

 𝑺𝒂 ⊑ 𝑺𝒃, 𝑆𝑎 results in less pessimistic estimates

 𝑆𝑎 holds more precise information than 𝑆𝑏

 ⊑ : Partial ordering between set of cache states

 ⊔ : compute an upper-bound on input states 

 𝑆𝑎 ⊑ (𝑆𝑎 ⊔ 𝑆𝑏) and 𝑆𝑏 ⊑ (𝑆𝑎 ⊔ 𝑆𝑏)

 ⊔ is a valid join function

Collection – Comparison between cache states
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Multipath analysis

Collection – Defining a join function

𝑆𝑎

(                   , 6)

(                   , 3)

(                   , 6)

(                   , 1)

(                   , 12)

(                   , 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state
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Multipath analysis

Collection – Defining a join function

𝑆𝑎

(                   , 9)

(                   , 7)

(                   , 12)

(                   , 4)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state



36

Multipath analysis

Collection – Defining a join function

𝑆𝑎

(                   , 9)

(                   , 7)

(                   , 12)

(                   , 4)
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Multipath analysis

Collection – Defining a join function

𝑆𝑎

(                   , 9)

(                   , 7)

(                   , 12)

(                   , 4)
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 Keep only common blocks and contents
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Multipath analysis

Collection – Defining a join function

𝑆𝑎

(                   , 9)

(                   , 7)

(                   , 9)

(                   , 7)

𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into empty state
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Multipath analysis

Collection – Defining a join function
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(                   , 6)

(                   , 1)

(                   , 12)

(                   , 4)

𝑆𝑏

(                   , 9)
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 Merge unmatched states into empty state
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WCEP Expansion

Path redundancy

 Redundant path: path 𝑃1 is redundant with path 𝑃2 if:

 𝑝𝑊𝐶𝐸𝑇 𝑃1 ≤ 𝑝𝑊𝐶𝐸𝑇 𝑃2

Redundant paths can be ignored by the analysis

 Inclusion is a sub-case of redundancy

 An including path holds at least the same sequence of accesses

 Proof in the paper

 Exploited in MBPTA, [PUB: Path Upper-Bounding, ECRTS’14]

?
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WCEP Expansion

Transformation - Empty conditional removals

A B C

 Empty branches generate including paths

 An edge from A to C, C also reached through B from A

 Empty branches Captured through dominators in CFG
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WCEP Expansion

Transformation - Loop unrolling

 Loop unrolling generates including paths 

 Virtual unrolling used in the absence of fixed-point computation

 Enforce maximum loop iterations
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Evaluation

Experimental conditions

 Analysis of misses in instruction cache

 16-way, fully associative 

 32B lines

 Excerpt of the TACLeBench suite

 Focus on interesting results

 Compared methods:

 Simulation: distribution over 108 runs

 Merging: synthetic path upper-bound based on reuse-distance

 Contention

 Collection: collection approach with R focussed blocks

 LRU: deterministic LRU cache analysis
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Evaluation

Results – ud, 3K accesses

LRU

Simulation + WCEP

Merging + WCEP

Contention+ WCEP

Collection R=4 + WCEP

Collection R=8 + WCEP
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Evaluation

Results – compress, 31K accesses

LRU

Simulation + WCEP

Merging + WCEP

Contention+ WCEP

Collection R=4 + WCEP

Collection R=8 + WCEP
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Evaluation

Results – fft 18K accesses

LRU

Simulation + WCEP

Merging + WCEP

Contention+ WCEP

Collection R=4 + WCEP

Collection R=8 + WCEP
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Evaluation

Complexity
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Evaluation

Complexity

 Complexity: 𝑂( 𝑆 × 𝑚 × log 𝑚 )

 𝒎: number of accesses in the program

 𝑺 : number of possible cache states, 𝑅 ≤ 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 ⇒ 2𝑅 = 𝑆

 R: number of focused blocks
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Evaluation

Complexity – Control flow partitioning

 Reduce complexity through control-flow partitioning

 Split the CFG in independent chunks of 1000 Misses

 B. Pasdeloup, “Static probabilistic timing analysis of worst-case execution time 

for random replacement caches,” INRIA, Tech. Rep., 2014
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Conclusions and perspectives

Definition of a multipath approach to SPTA:
 Extend collection approaches

 Extend contention approaches

 Orthogonal to SPTA optimisation approaches

Identification and removal of non pWCET-relevant paths:
 Based on simple heuristics

 Reduced complexity and pessimism

Improve conservation of information on join

Identify additional cases for path redundancy
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Backup

 Memory hierarchies: the quick version

 Mostly inclusive Memory hierarchies: the anomalies and beyond

 Exclusive Memory hierarchies: Pushing things around

 Improving on the join function: Salvaging capacity

 Benefits of WCEP: TODO

 Impact of CFG-partitioning on precision: TODO

RTSOPS’14
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Memory hierarchies

 Hierarchies induce additional dependencies on different levels.

 Hinder the definition of sound hit probabilities.

 Hinder the sound combination of hit probabilities.

 Assumptions for contention on single caches do not hold.

 No model of the different hierarchy policies.

 Increases the complexity of the collection approaches.

 Evictions on multiple levels multiply the number of states.

Impact on SPTA
RTSOPS’14
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Memory hierarchies

 Compute the reuse distance from the guaranteed insertion in cache.

 No guarantee on misses with randomised caches.

 The requested block is in the L1.

Mostly-inclusive policy - SPTA

aa b c a d e

𝐾𝐿1(𝑎) = 2

2 ≤ 𝐾𝐿2(𝑎) ≤ 4

RTSOPS’14
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Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 L2 L3

May be present

RTSOPS’14
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Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

?

L1 L2 L3

RTSOPS’14
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Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Miss

RTSOPS’14
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Memory hierarchies
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Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Miss

?

?

𝐿𝐿3 + 𝐿𝑀𝑒𝑚 +𝐿𝐿2

RTSOPS’14
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Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 Hit

?

?

𝐿𝐿1 + 𝐿𝑀𝑒𝑚 +𝐿𝑀𝑒𝑚

RTSOPS’14
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Memory hierarchies

 A miss is not the worst-case contents-wise.

 Assuming an insertion occurs might result in lower latencies later.

 Discrepancy with temporal worst-case.

Mostly-inclusive policy - SPTA

L1 HitL1 Miss

𝐿𝐿3 + 𝐿𝑀𝑒𝑚 +𝐿𝐿2 𝐿𝐿1 + 𝐿𝑀𝑒𝑚 +𝐿𝑀𝑒𝑚≤

≥

RTSOPS’14
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Memory hierarchies

 Miss on the L1 contribute to the reuse distance of all levels.

 Hits beyond the L1 trigger invalidations.

 Insertion on L occur on eviction from L-1.

 Insertions on L do not match the sequence of accesses.

 No guarantee on evictions from L-1 with randomised caches.

Exclusive policy - Properties
RTSOPS’14
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Multipath analysis

Improving the join function

𝑆𝑎

(                   , 6)

(                   , 3)

(                   , 6)

(                   , 1)

(                   , 12)

(                   , 4)

𝑆𝑏

(                   , 9)

(                   , 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states
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Multipath analysis

Improving the join function

𝑆𝑎

(                   , 6)

(                   , 3)

(                   , 6)

(                   , 1)

(                   , 12)

(                   , 4)

𝑆𝑏

(                   , 9)

(                   , 7)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states

⊑
⊑
⊑



67

Multipath analysis
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Multipath analysis

Improving the join function

𝑆𝑎

(                   , 6)

(                   , 3)

(                   , 6)

(                   , 1)

(                   , 9)

(                   , 4)

(                   , 3)

𝑆𝑏

(                   , 9)
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𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator
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Multipath analysis

Improving the join function

𝑆𝑎

(                   , 6)

(                   , 3)

(                   , 6)

(                   , 1)

(                   , 9)

(                   , 4)

(                   , 3)

𝑆𝑏

(                   , 9)

(                   , 2)

(                   , 4)

(                   , 1)

𝑆𝑎 ⊔ 𝑆𝑏

 Keep only common blocks and contents

 Occurrence bounded by lowest denominator

 Maximise merged distributions (Omitted)

 Merge unmatched states into included states


