Static Probabilistic Timing Analysis for Multipath Programs

Benjamin Lesage, David Griffin, Sebastian Altmeyer, Robert I. Davis

RTSS 2015 - Dec 4th

Context pWCET estimation

pWCET: WCET with attached exceedance probability

- Bound the occurrence of events in the system
- Match industry standard
- Less pessimistic than absolute bounds

Context Randomised caches

- Caches bridge the gap between the processor and the memory.
 - Memory requests are served by the cache on hits.

Context Randomised caches

- Caches bridge the gap between the processor and the memory.
 - Memory requests are served by the cache on hits.

Context Randomised caches

- Caches bridge the gap between the processor and the memory.
 - Memory requests are served by the cache on hits.

Context Randomised caches

- Caches bridge the gap between the processor and the memory.
 - Memory requests are served by the cache on hits.
- On a miss, the requested data is inserted in the cache.
 - The data is expected to be reused (locality property).
 - The eviction policy makes room in the cache.

Context Randomised caches

- Caches bridge the gap between the processor and the memory.
 - Memory requests are served by the cache on hits.
- On a miss, the requested data is inserted in the cache.
 - The data is expected to be reused (locality property).
 - The eviction policy makes room in the cache.

Context Randomised caches

- Caches bridge the gap between the processor and the memory.
 - Memory requests are served by the cache on hits.
- On a miss, the requested data is inserted in the cache.
 - The data is expected to be reused (locality property).
 - The eviction policy makes room in the cache.

Context Evict-on-miss replacement policy

• On a miss, evict one of the N cache lines at random.

- Provide a model suited to pWCET computation.
- On a miss, each line has the same probability to be kept: 1

• After K misses:
$$\left(\frac{N-1}{N}\right)^{K}$$

$$-\left(\frac{1}{N}\right) = \left(\frac{N-1}{N}\right)$$

- Contention approach: lower-bound hit probability $P(H^{L1})$ per access.
 - Derive a Probability Mass Function (PMF) for access latency.
 - Convolve the PMF of all accesses.
 - Requires the independence of the bound from actual hit/miss events.

$$P(H^{L1}) = \left(\frac{N-1}{N}\right)^{K} \longrightarrow PMF = \begin{pmatrix} L_{L1} & L_{Mem} \\ P(H^{L1}) & 1 - P(H^{L1}) \end{pmatrix}$$

- *K*: Reuse distance, misses from the last insertion in cache.
- N: Associativity, number of cache ways.
- L_{L1} : Access latency to L1 cache.

- Contention approach: lower-bound hit probability $P(H^{L1})$ per access.
 - Derive a Probability Mass Function (PMF) for access latency.
 - Convolve the PMF of all accesses.
 - Requires the independence of the bound from actual hit/miss events.

$$P(H^{L1}) = \underbrace{\binom{N-1}{N}}^{K} \longrightarrow PMF = \begin{pmatrix} L_{L1} & L_{Mem} \\ P(H^{L1}) & 1 - P(H^{L1}) \end{pmatrix}$$

a,b,c,a,b,c + = 3 predicted hits

- K: Reuse distance, misses from the last insertion in cache.
- N: Associativity, number of cache ways.
- L_{L1} : Access latency to L1 cache.

- Contention approach: lower-bound hit probability $P(H^{L1})$ per access.
 - Derive a Probability Mass Function (PMF) for access latency.
 - Convolve the PMF of all accesses.
 - Requires the independence of the bound from actual hit/miss events.

$$P(H^{L1}) = \begin{cases} 0 & Co > N \\ \left(\frac{N-1}{N}\right)^{K} & K \le N \end{cases} \longrightarrow PMF = \begin{pmatrix} L_{L1} & L_{Mem} \\ P(H^{L1}) & 1 - P(H^{L1}) \end{pmatrix}$$

- K: Reuse distance, misses from the last insertion in cache.
- Co: Contention, potential hits from the last insertion in cache.
- N: Associativity, number of cache ways.
- L_{L1} : Access latency to L1 cache.

- **Collection approach:** approximate the set of possible cache states
 - With the execution time and occurrence probability.
 - A miss creates a new state per cache line.

Context

- **Collection approach:** approximate the set of possible cache states
 - With the execution time and occurrence probability.
 - A miss creates a new state per cache line.
 - Focus on a subset of blocks to reduce complexity.

Context SPTA on Access traces

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

- Select focused blocks
- Perform contention and collection analysis
- Combine computed distributions

Context SPTA on Control flow graphs

How to extend existing approaches to control flow graphs?

Context SPTA on Control flow graphs

How to extend existing approaches to control flow graphs?

- Contention analysis
- Focused blocks selection

Collection analysis

Context SPTA on Control flow graphs

How to extend existing approaches to control flow graphs?

- Contention analysis
- Focused blocks selection
- Collection analysis

Outline

Context

- Multipath SPTA
 - Contention analysis
 - Selecting focussed blocks
 - Collection analysis
- WCEP Expansion
 - Definition of Including paths
 - Transformations
- Evaluation
- Conclusions and perspectives

Multipath analysis Contention analysis

$$P(H^{L1}) = \begin{cases} 0 & Co > N \\ \left(\frac{N-1}{N}\right)^{K} & K \le N \end{cases}$$

- K: Reuse distance, maximum misses from the last insertion in cache.
 - Maximised across all paths leading to access
 - Computed through forward dataflow analysis
- Co: Contention, maximum potential hits from the last insertion in cache.
- N: Associativity, number of cache ways.
- L_{L1} : Access latency to L1 cache.

Multipath SPTA Selecting focussed blocks

- Enumerate cache states only for *R* focussed blocks
 - R must change according to path
 - *R* may change at different points in task
- Focus on blocks with smallest lifespan
 - Most likely to be kept in cache
 - Relies on a lower bound
 - Combines forward and backward reuse distance

Multipath SPTA Selecting focussed blocks

- Enumerate cache states only for *R* focussed blocks
 - *R* must change according to path
 - *R* may change at different points in task
- Focus on blocks with smallest lifespan
 - Most likely to be kept in cache
 - Relies on a lower bound
 - Combines forward and backward reuse distance

Multipath SPTA Selecting focussed blocks

- Enumerate cache states only for *R* focussed blocks
 - R must change according to path
 - *R* may change at different points in task
- Focus on blocks with smallest lifespan
 - Most likely to be kept in cache
 - Relies on a lower bound
 - Combines forward and backward reuse distance

Multipath analysis Collection – Control flow convergence

- Analysis state holds a set of :
 - Cache contents
 - Occurrence probability
 - Maximum execution time distribution
- Gather information from all incoming paths
 - Only keep guaranteed information
 - Upper-bound incoming states

Multipath analysis

Collection – Comparison between cache states

- $S_a \subseteq S_b$, S_a results in less pessimistic estimates
 - S_a holds more precise information than S_b
 - ⊑ : Partial ordering between set of cache states

Loss of information related to cache contents

Information split across contents

$L \leq U \Rightarrow (\square, 1, L) \subseteq (\square, 1, U)$

• The contribution of U to pWCET is greater than L

Multipath analysis Collection – Comparison between cache states

- $S_a \subseteq S_b$, S_a results in less pessimistic estimates
 - S_a holds more precise information than S_b
 - ⊑ : Partial ordering between set of cache states
- L : compute an upper-bound on input states
 - $S_a \sqsubseteq (S_a \sqcup S_b)$ and $S_b \sqsubseteq (S_a \sqcup S_b)$
 - ⊔ is a valid join function

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into empty state

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into empty state

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into empty state

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into empty state

Multipath analysis Collection – Defining a join function

Keep only common blocks and contents

- Occurrence bounded by lowest denominator
- Maximise merged distributions (Omitted)
- Merge unmatched states into empty state

Multipath analysis Collection – Defining a join function

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into empty state

Multipath analysis Collection – Defining a join function

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into empty state

- **Redundant path:** path P_1 is redundant with path P_2 if:
 - $pWCET(P_1) \le pWCET(P_2)$

Redundant paths can be ignored by the analysis

- Inclusion is a sub-case of redundancy
 - An **including** path holds at least the same sequence of accesses
 - Proof in the paper
 - Exploited in MBPTA, [PUB: Path Upper-Bounding, ECRTS'14]

WCEP Expansion Transformation - Empty conditional removals

- **Empty branches** generate including paths
 - An edge from A to C, C also reached through B from A
 - Empty branches Captured through dominators in CFG

WCEP Expansion Transformation - Empty conditional removals

- **Empty branches** generate including paths
 - An edge from A to C, C also reached through B from A
 - Empty branches Captured through dominators in CFG

WCEP Expansion Transformation - Loop unrolling

• Loop unrolling generates including paths

- Virtual unrolling used in the absence of fixed-point computation
- Enforce maximum loop iterations

WCEP Expansion Transformation - Loop unrolling

- Loop unrolling generates including paths
 - Virtual unrolling used in the absence of fixed-point computation
 - Enforce maximum loop iterations

WCEP Expansion Transformation - Loop unrolling

• Loop unrolling generates including paths

- Virtual unrolling used in the absence of fixed-point computation
- Enforce maximum loop iterations

Evaluation Experimental conditions

- Analysis of misses in instruction cache
 - 16-way, fully associative
 - 32B lines
- Excerpt of the TACLeBench suite
 - Focus on interesting results
- Compared methods:
 - Simulation: distribution over 10⁸ runs
 - Merging: synthetic path upper-bound based on reuse-distance
 - Contention
 - Collection: collection approach with R focussed blocks
 - LRU: deterministic LRU cache analysis

Evaluation Results – ud, 3K accesses

Evaluation Results – compress, 31K accesses

Evaluation Results – fft 18K accesses

Evaluation Complexity

Evaluation Complexity

• **Complexity**: $O(|S| \times m \times \log(m))$

- *m*: number of accesses in the program
- |S|: number of possible cache states, $R \leq associativity \Rightarrow 2^R = |S|$
- R: number of focused blocks

Evaluation Complexity – Control flow partitioning

Runtime of the Analysis

- Reduce complexity through control-flow partitioning
 - Split the CFG in independent chunks of 1000 Misses
 - B. Pasdeloup, "Static probabilistic timing analysis of worst-case execution time for random replacement caches," INRIA, Tech. Rep., 2014

Conclusions and perspectives

Definition of a multipath approach to SPTA:

- Extend collection approaches
- Extend contention approaches
- Orthogonal to SPTA optimisation approaches

Identification and removal of non pWCET-relevant paths:

Based on simple heuristics

Reduced complexity and pessimism Improve conservation of information on join Identify additional cases for path redundancy

Backup

Memory hierarchies: the quick version 2 RTSOPS'14

- Exclusive Memory hierarchies: Pushing things around
- Improving on the join function: Salvaging capacity
- Benefits of WCEP: TODO
- Impact of CFG-partitioning on precision: TODO

Memory hierarchies Impact on SPTA

- Hierarchies induce additional dependencies on different levels.
 - Hinder the definition of sound hit probabilities.
 - Hinder the sound combination of hit probabilities.
- Assumptions for contention on single caches do not hold.
 - No model of the different hierarchy policies.
- Increases the complexity of the collection approaches.
 - Evictions on multiple levels multiply the number of states.

- Compute the reuse distance from the guaranteed insertion in cache.
 - No guarantee on misses with randomised caches.
 - The requested block is in the L1.

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

?

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

 $L_{L3} + L_{Mem} + L_{L2}$

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

 $L_{L1} + L_{Mem} + L_{Mem}$

- A miss is not the worst-case contents-wise.
 - Assuming an insertion occurs might result in lower latencies later.
 - Discrepancy with temporal worst-case.

Memory hierarchies Exclusive policy - Properties

- Miss on the L1 contribute to the reuse distance of all levels.
 - Hits beyond the L1 trigger invalidations.
- Insertion on L occur on eviction from L-1.
 - Insertions on L do not match the sequence of accesses.
 - No guarantee on evictions from L-1 with randomised caches.

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into included states

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into included states

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into included states

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into included states

- Keep only common blocks and contents
 - Occurrence bounded by lowest denominator
 - Maximise merged distributions (Omitted)
 - Merge unmatched states into included states

